Toán 10 Bài tập cuối chương I – Cánh diều

Photo of author

By THPT An Giang

[ad_1]

Nội dung đang xem: Toán 10 Bài tập cuối chương I – Cánh diều

Giải Toán 10 Bài tập cuối chương I sách Cánh diều giúp các em học sinh lớp 10 có thêm nhiều gợi ý tham khảo để giải các bài tập cuối chương Mệnh đề toán học tập hợp trang 19 tập 1 được nhanh chóng và dễ dàng hơn.

Giải Toán 10 trang 19 Tập 1 sách Cánh diều giúp các em luyện tập, giải các bài tập về mệnh đề và tập hợp. Giải Bài tập cuối chương I trang 19 được trình bày rõ ràng, cẩn thận, dễ hiểu nhằm giúp học sinh nhanh chóng biết cách làm bài, đồng thời là tư liệu hữu ích giúp giáo viên thuận tiện trong việc hướng dẫn học sinh học tập. Vậy sau đây là nội dung chi tiết Giải Toán lớp 10: Bài tập cuối chương 1 trang 19, mời các bạn cùng tải tại đây.

Giải Toán 10 trang 19 Cánh diều – Tập 1

Bài 1 trang 19

Phát biểu nào sau đây là một mệnh đề toán học?

a) Tích của ba số tự nhiên liên tiếp luôn chia hết cho 3.

b) Nếu widehat {AMB} = {90^o} thì M nằm trên đường tròn đường kính AB.

c) Ngày 2 tháng 9 là ngày Quốc Khánh của nuốc Cộng hòa Xã hội chủ nghĩa Việt Nam

Phương pháp giải 

+ Định nghĩa mệnh đề: Mệnh đề là một câu khẳng định đúng hoặc một câu khẳng định sai.

Xem thêm:  Toán 10 Bài 3: Nhị thức Newton

+ Mệnh đề toán học là một mệnh đề khẳng định về một sự kiện trong toán học.

+ Mỗi mệnh đề toán học phải hoặc đúng hoặc sai. Một mệnh đề toán học không thể vừa đúng, vừa sai.

Gợi ý đáp án

a) Phát biểu “Tích của ba số tự nhiên liên tiếp luôn chia hết cho 3” là một mệnh đề toán học.

b) Phát biểu “Nếu widehat {AMB} = {90^o} thì M nằm trên đường tròn đường kính AB” là một mệnh đề toán học.

c) Phát biểu “Ngày 2 tháng 9 là ngày Quốc Khánh của nuốc Cộng hòa Xã hội chủ nghĩa Việt Nam” không là một mệnh đề toán học (vì không liên quan đến sự kiện nào trong toán học).

Bài 2 trang 19

Lập mệnh đề phủ định của mỗi mệnh đề sau và nhận xét tính đúng sai của mệnh đề phủ định đó.

A: “Đồ thị hàm số y = x là một đường thẳng”

B: “Đồ thị hàm số y = {x^2} đi qua điểm A (3; 6)”

Phương pháp giải 

+ Cho mệnh đề P. Mệnh đề “Không phải P” được gọi là mệnh đề phủ định của mệnh đề P và kí hiệu là overline{P}.

Gợi ý đáp án

+) Mệnh đề phủ định của mệnh đề A là overline A : “Đồ thị hàm số y = x không là một đường thẳng”

Mệnh đề overline A sai vì đồ thị hàm số y = x là một đường thẳng.

+) Mệnh đề phủ định của mệnh đề B là overline B: “Đồ thị hàm số y = {x^2} không đi qua điểm A (3; 6)”

Mệnh đề overline Bđúng vì 6 ne {3^2} nên A (3;6) không thuộc đồ thị hàm số y = {x^2}.

Bài 3 trang 19

Cho tứ giác ABCD. Lập mệnh đề P Rightarrow Q và xét tính đúng sai của mệnh đề đó với:

a) P: “Tứ giác ABCD là hình chữ nhật”, Q: “Tứ giác ABCD là hình bình hành”

b) P: “Tứ giác ABCD là hình thoi”, Q: “Tứ giác ABCD là hình vuông”

Xem thêm:  Toán 10 Bài tập cuối chương VI - Kết nối tri thức với cuộc sống

Phương pháp giải 

+ Cho hai mệnh đề PQ . Mệnh đề “Nếu P thì Q ” được gọi là mệnh đề kéo theo và kí hiệu là P Rightarrow Q .

Gợi ý đáp án

a) Mệnh đề P Rightarrow Q là: “Nếu tứ giác ABCD là hình chữ nhật thì tứ giác ABCD là hình bình hành”

Đúng vì mỗi hình chữ nhật đều là hình bình hành.

b) Mệnh đề P Rightarrow Q là: “Nếu tứ giác ABCD là hình thoi thì tứ giác ABCD là hình vuông”

Sai vì hầu hết các hình thoi không là hình vuông

Bài 4 trang 19

Dùng kí hiệu để viết mỗi tập hợp sau và biểu diễn mỗi tập hợp đó trên trục số:

a) A = { x in mathbb{R}| - 2 < x < - 1}

b)B = { x in mathbb{R}| - 3 le x le 0}

c) C = { x in mathbb{R}|x le 1}

d) D = { x in mathbb{R}|x > - 2}

Phương pháp giải 

+ Cho mệnh đề

Phủ định của mệnh đề là mệnh đề .

Phủ định của mệnh đề là mệnh đề .

Gợi ý đáp án

a) Tập hợp A là khoảng (-2;1) và được biểu diễn là:

toan 10 bai tap cuoi chuong i canh dieu 1

b) Tập hợp B là đoạn [-3; 0] và được biểu diễn là:

toan 10 bai tap cuoi chuong i canh dieu 2

c) Tập hợp B là nửa khoảng ( - infty ;1] và được biểu diễn là:

toan 10 bai tap cuoi chuong i canh dieu 3

d) Tập hợp B là nửa khoảng ( - infty ;1] và được biểu diễn là:

toan 10 bai tap cuoi chuong i canh dieu 4

Bài 5 trang 19

Lập mệnh đề phủ định của mỗi mệnh đề sau:

A: “forall x in mathbb{R},|x|; ge x”

C: “exists x in mathbb{Z},2{x^2} + 3x - 2 = 0”

D: “exists x in mathbb{Z},{x^2} < x”

Phương pháp giải 

+ Một số tập con thường dùng của tập hợp số thực:

Gợi ý đáp án

Phủ định của mệnh đề A là mệnh đề “exists x in mathbb{R},|x|; le x”

Phủ định của mệnh đề B là mệnh đề “exists x in mathbb{R},x + frac{1}{x} le 2”

Phủ định của mệnh đề C là mệnh đề “forall x in mathbb{Z},2{x^2} + 3x - 2 ne 0”

Phủ định của mệnh đề D là mệnh đề “forall x in mathbb{Z},{x^2} > x”

Bài 6 trang 19

Giải Bóng đá vô địch thế giới World Cup 2018 được tổ chức ở Liên bang Nga gồm 32 đội. Sau vòng thi đấu bảng, Ban tổ chức chọn ra 16 đội chia làm 8 cặp đấu loại trực tiếp. Sau vòng đấu loại trực tiếp đó, Ban tổ chức tiếp tục chọn ra 8 đội chia làm 4 cặp đấu loại trực tiếp ở vòng tứ kết. Gọi A là tập hợp 32 đội tham gia World Cup 2018, B là tập hợp 16 đội sau vòng thi đấu bảng, C là tập hợp 8 đội thi đấu vòng tứ kết.

Xem thêm:  Toán 10 Bài 3: Khái niệm vectơ

a) Sắp xếp các tập hợp A, B, C theo quan hệ “ subset ”.

b) So sánh hai tập hợp A cap CB cap C.

c) Tập hợp A,{rm{backslash }},B gồm những đội bóng bị loại sau vòng đấu nào?

Gợi ý đáp án

a) Ta có: A là tập hợp 32 đội tham gia World Cup 2018.

B là tập hợp 16 đội sau vòng thi đấu bảng (chọn từ 32 đội của tập hợp A sau thi thi đấu theo bảng)

Rõ ràng mỗi phần tử (mỗi đội) của tập hợp B cũng là một phần tử (một đội) của tập hợp A.

Do đó: B subset A

Tương tự: Từ 16 đội của B, sau khi đấu loại trực tiếp, còn lại 8 đội vào tứ kết kí hiệu là tập hợp C

Do đó:C subset B

Vậy C subset B subset A.

b) Tập hợp A cap C gồm các đội bóng vừa thuộc 32 đội tham gia World Cup 2018, vừa thuộc 8 đội thi đấu vòng tứ kết, chính là 8 đội của tập hợp C.

Tập hợp B cap C gồm các đội bóng vừa thuộc 16 đội sau vòng thi đấu bảng, vừa thuộc 8 đội thi đấu vòng tứ kết, chính là 8 đội của tập hợp C.

Vậy A cap C = B cap C = C

c) Tập hợp A,{rm{backslash }},B gồm các đội thuộc 32 đội tham gia World Cup 2018 nhưng không thuộc 16 đội sau vòng thi đấu bảng.

Vậy đó là 16 đội không vượt qua vòng thi đấu bảng.

Nói cách khác: Tập hợp A,{rm{backslash }},B gồm các đội bóng bị loại sau vòng đấu bảng.

Bài 7 trang 19

Cho hai tập hợp: A = [0;3], B = (2; + infty ). Xác định A cap B,A cup B,A,{rm{backslash }},B,B,{rm{backslash }},A,mathbb{R},{rm{backslash }},B.

Gợi ý đáp án

+) A cap B = [0;3] cap (2; + infty ) = (2;3]

+) A cup B = [0;3] cup (2; + infty ) = [0; + infty )

+) A,{rm{backslash }},B = [0;3],{rm{backslash }},(2; + infty ) = [0;2]

+) B,{rm{backslash }},A = (2; + infty ),{rm{backslash }},[0;3] = (3; + infty )

+) mathbb{R},{rm{backslash }},B = mathbb{R},{rm{backslash }},(2; + infty ) = ( - infty ;2]

Bài 8 trang 19

Gọi M là tập nghiệm của phương trình {x^2} - 2x - 3 = 0.

N là tập nghiệm của phương trình (x + 1)(2x – 3) = 0

Tìm P = M cap N.

Gợi ý đáp án

Ta có:

{x^2} - 2x - 3 = 0 Leftrightarrow (x + 1)(x - 3) = 0

Leftrightarrow left[ begin{array}{l}x = - 1\x = 3end{array} right. Rightarrow M = { - 1;3}

Lại có: (x + 1)(2x - 3) = 0 Leftrightarrow left[ begin{array}{l}x = - 1\x = frac{3}{2}end{array} right.

Rightarrow N = left{ { - 1;frac{3}{2}} right}

Rightarrow P = M cap N = left{ { - 1} right}.

[ad_2]

Đăng bởi: THPT An Giang

Chuyên mục: Học Tập

Viết một bình luận