Toán 10 Bài 5: Hai dạng phương trình quy về phương trình bậc hai

Photo of author

By THPT An Giang

[ad_1]

Nội dung đang xem: Toán 10 Bài 5: Hai dạng phương trình quy về phương trình bậc hai

Giải Toán 10 Bài 5: Hai dạng phương trình quy về phương trình bậc hai sách Cánh diều là tài liệu vô cùng hữu ích giúp các em học sinh lớp 10 có thêm nhiều gợi ý tham khảo, dễ dàng đối chiếu kết quả khi làm bài tập toán trang 59.

Giải SGK Toán 10 Bài 5 trang 59 tập 1 được biên soạn chi tiết, bám sát nội dung trong sách giáo khoa. Mỗi bài toán đều được giải thích cụ thể, chi tiết. Qua đó giúp các em củng cố, khắc sâu thêm kiến thức đã học trong chương trình chính khóa; có thể tự học, tự kiểm tra được kết quả học tập của bản thân. Vậy sau đây là nội dung chi tiết Giải Toán 10 Bài 5: Hai dạng phương trình quy về phương trình bậc hai sách Cánh diều, mời các em cùng đón đọc.

Giải Toán 10 trang 58, 59 Cánh diều – Tập 1

Bài 1 trang 58

Giải các phương trình sau:

a) sqrt {2{x^2} - 3x - 1} = sqrt {2x + 3}

b) sqrt {4{x^2} - 6x - 6} = sqrt {{x^2} - 6}

c) sqrt {x + 9} = 2x - 3

d) sqrt { - {x^2} + 4x - 2} = 2 - x

Gợi ý đáp án

Xem thêm:  Toán 10: Bài tập cuối chương III - Cánh diều

a) Bình phương hai vế ta được

2{x^2} - 3x - 1 = 2x + 3

begin{array}{l} Leftrightarrow 2{x^2} - 5x - 4 = 0\ Leftrightarrow left[ begin{array}{l}x = frac{{5 + sqrt {57} }}{4}\x = frac{{5 - sqrt {57} }}{4}end{array} right.end{array}

Thay các giá trị tìm được vào bất phương trình 2x + 3 ge 0 thì thấy cả 2 nghiệm đều thỏa mãn.

Vậy tập nghiệm của phương trình là S = left{ {frac{{5 - sqrt {57} }}{4};frac{{5 + sqrt {57} }}{4}} right}

b) Bình phương hai vế ta được

begin{array}{l}4{x^2} - 6x - 6 = {x^2} - 6\ Leftrightarrow 3{x^2} - 6x = 0\ Leftrightarrow left[ begin{array}{l}x = 0\x = 2end{array} right.end{array}

Thay các giá trị tìm được vào bất phương trình {x^2} - 6 ge 0 thì thấy chỉ có nghiệm x = 2 thỏa mãn.

Vậy tập nghiệm của phương trình là S = left{ 2 right}

c) sqrt {x + 9} = 2x - 3(*)

Ta có: 2x - 3 ge 0 Leftrightarrow x ge frac{3}{2}

Bình phương hai vế của (*) ta được:

begin{array}{l}x + 9 = {left( {2x - 3} right)^2}\ Leftrightarrow 4{x^2} - 12x + 9 = x + 9\ Leftrightarrow 4{x^2} - 13x = 0\ Leftrightarrow left[ begin{array}{l}x = 0left( {KTM} right)\x = frac{{13}}{4}left( {TM} right)end{array} right.end{array}

Vậy tập nghiệm của phương trình là S = left{ {frac{{13}}{4}} right}

d) sqrt { - {x^2} + 4x - 2} = 2 - x(**)

Ta có:2 - x ge 0 Leftrightarrow x le 2

Bình phương hai vế của (**) ta được:

begin{array}{l} - {x^2} + 4x - 2 = {left( {2 - x} right)^2}\ Leftrightarrow - {x^2} + 4x - 2 = {x^2} - 4x + 4\ Leftrightarrow 2{x^2} - 8x + 6 = 0\ Leftrightarrow left[ begin{array}{l}x = 1left( {TM} right)\x = 3left( {KTM} right)end{array} right.end{array}

Vậy tập nghiệm của phương trình là S = left{ 1 right}

Bài 2 trang 59

Giải các phương trình sau:

a) sqrt {2 - x} + 2x = 3

b) sqrt { - {x^2} + 7x - 6} + x = 4

Gợi ý đáp án

a) sqrt {2 - x} + 2x = 3 Leftrightarrow sqrt {2 - x} = 3 - 2x (1)

Ta có: 3 - 2x ge 0 Leftrightarrow x le frac{3}{2}

Bình phương hai vế của (1) ta được:

begin{array}{l}2 - x = {left( {3 - 2x} right)^2}\ Leftrightarrow 2 - x = 9 - 12x + 4{x^2}\ Leftrightarrow 4{x^2} - 11x + 7 = 0\ Leftrightarrow left[ begin{array}{l}x = 1left( {TM} right)\x = frac{7}{4}left( {KTM} right)end{array} right.end{array}

Vậy tập nghiệm của phương trình là S = left{ 1 right}

b) sqrt { - {x^2} + 7x - 6} + x = 4 Leftrightarrow sqrt { - {x^2} + 7x - 6} = 4 - x (2)

Ta có:4 - x ge 0 Leftrightarrow x le 4

Bình phương hai vế của (2) ta được:

begin{array}{l} - {x^2} + 7x - 6 = {left( {4 - x} right)^2}\ Leftrightarrow - {x^2} + 7x - 6 = 16 - 8x + {x^2}\ Leftrightarrow 2{x^2} - 15x + 22 = 0\ Leftrightarrow left[ begin{array}{l}x = 2left( {TM} right)\x = frac{{11}}{2}left( {KTM} right)end{array} right.end{array}

Vậy tập nghiệm của phương trình là S = left{ 2 right}

Bài 3 trang 59

Để leo lên một bức tường, bác Nam dùng một chiếc thang có chiều dài cao hơn bức tường đó 1 m. Ban đầu, bác Nam đặt chiếc thang mà đầu trên của chiếc thang đó vừa chạm đúng vào mép trên bức tường (Hình 33a). Sau đó, bác Nam dịch chuyển chân thang vào gần chân tường thêm 0,5 m thì bác Nam nhận thấy thang tạo với mặt đất một góc {60^0} (Hình 33b). Bức tường cao bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

toan 10 bai 5 hai dang phuong trinh quy ve phuong trinh bac hai

Gợi ý đáp án

toan 10 bai 5 hai dang phuong trinh quy ve phuong trinh bac hai 1

Gọi chiều cao bức tường DG là x (m) (x>0)

Chiều dài chiếc thang là x+1 (m)

Xem thêm:  Toán 10 Bài 4: Bất phương trình bậc hai một ẩn

Khoảng cách từ chân thang sau khi bác Nam điều chỉnh là: EG = frac{{DG}}{{sqrt 3 }} = frac{{xsqrt 3 }}{3} (m)

Áp dụng định lý Py-ta-go cho tam giác vuông ABC ta có:

BC = sqrt {{{left( {x + 1} right)}^2} - {x^2}} (m)

Bác Nam dịch chuyển chân thang vào gần chân tường thêm 0,5 m nên ta có:

sqrt {{{left( {x + 1} right)}^2} - {x^2}} - 0,5 = frac{{xsqrt 3 }}{3}

begin{array}{l} Leftrightarrow sqrt {{{left( {x + 1} right)}^2} - {x^2}} = frac{x}{{sqrt 3 }} + 0,5\ Leftrightarrow sqrt {2x + 1} = frac{x}{{sqrt 3 }} + 0,5left( * right)end{array}

Ta có frac{x}{{sqrt 3 }} + 0,5 ge 0 Leftrightarrow frac{x}{{sqrt 3 }} ge - frac{1}{2} Leftrightarrow x ge - frac{{sqrt 3 }}{2} (Luôn đúng do x>0)

Ta bình phương hai vế (*) ta được:

begin{array}{l}2x + 1 = {left( {frac{x}{{sqrt 3 }} + 0,5} right)^2}\ Leftrightarrow 2x + 1 = frac{{{x^2}}}{3} + frac{x}{{sqrt 3 }} + 0,25\ Leftrightarrow frac{{{x^2}}}{3} + left( {frac{{sqrt 3 }}{3} - 2} right)x - frac{3}{4} = 0\ Leftrightarrow left[ begin{array}{l}x approx 4,7left( {tm} right)\x approx - 0,5left( {ktm} right)end{array} right.end{array}

Vậy chiều cao của bức tường là 4,7 m.

Bài 4 trang 59

Một người đứng ở điểm A trên một bờ sông rộng 300 m, chèo thuyền đến vị trí D, sau đó chạy bộ đến vị trí B cách C một khoảng 800 m như Hình 34. Vận tốc chèo thuyền là 6 km/h, vận tốc chạy bộ là 10 km/h và giả sử vận tốc dòng nước không đáng kể. Tính khoảng cách từ vị trí C đến D, biết tổng thời gian người đó chèo thuyền và chạy bộ từ A đến B là 7,2 phút.

Gợi ý đáp án

Đổi 300 m =0,3 km, 800 m = 0,8 km

7,2 phút =0,12(h)

Gọi khoảng cách từ C đến D là x (km) (0,8>x>0)

Khi đó, DB=0,8-x (km)

Theo định lý Py-ta-go ta có: AD = sqrt {A{C^2} + C{D^2}} = sqrt {0,{3^2} + {{left( {0,8 - x} right)}^2}} (km)

Thời gian đi từ A đến D là: frac{{sqrt {0,{3^2} + {{left( {0,8 - x} right)}^2}} }}{6}left( h right)

Thời gian đi từ D đến B là:frac{{0,8 - x}}{{10}}left( h right)

Tổng thời gian người đó chèo thuyền và chạy bộ từ A đến B là 7,2 phút nên ta có phương trình:

begin{array}{l}frac{{sqrt {0,{3^2} + {{left( {0,8 - x} right)}^2}} }}{6} + frac{{0,8 - x}}{{10}} = 0,12\ Leftrightarrow sqrt {0,{3^2} + {{left( {0,8 - x} right)}^2}} .5 + 3.left( {0,8 - x} right) = 0,12.30\ Leftrightarrow 5.sqrt {0,{3^2} + {{left( {0,8 - x} right)}^2}} - 3x - 1,2 = 0\ Leftrightarrow 5.sqrt {0,{3^2} + {{left( {0,8 - x} right)}^2}} = 3x + 1,2\ Leftrightarrow 25.left[ {0,{3^2} + {{left( {0,8 - x} right)}^2}} right] = {left( {3x + 1,2} right)^2}\ Leftrightarrow 25.left( {{x^2} - 1,6x + 0,73} right) = 9{x^2} + 7,2x + 1,44\ Leftrightarrow 16{x^2} - 47,2x + 16,81 = 0\ Leftrightarrow left[ begin{array}{l}x = frac{{59 + 30sqrt 2 }}{{40}} > 0,8left( {ktm} right)\x = frac{{59 - 30sqrt 2 }}{{40}} approx 0,414left( {tm} right)end{array} right.end{array}

Ta bình phương được do x > 0 Rightarrow 3x + 1,2 > 0

Vậy khoảng cách từ vị trí C đến D là 414m.

Bài 5 trang 59

Một ngọn hải đăng đặt tại vị trí A cách bờ biển một khoảng cách AB = 4 km. Trên bờ biển có một cái kho ở vị trí C cách B một khoảng là 7 km. Người canh hải đăng có thể chèo thuyền từ A đến vị trí M trên bờ biển với vận tốc 3 km/h rồi đi bộ đến C với vận tốc 5 km/h như Hình 35. Tính khoảng cách từ vị trí B đến M, biết thời gian người đó đi từ A đến C là 148 phút.

Xem thêm:  Toán 10 Bài tập cuối chương V - Kết nối tri thức với cuộc sống

Gợi ý đáp án

Gọi BM=x km (0<x<7)

=> MC=7-x (km)

Ta có: AM = sqrt {A{B^2} + B{M^2}} = sqrt {16 + {x^2}} left( {km} right)

Thời gian từ A đến M là: frac{{sqrt {16 + {x^2}} }}{3}left( h right)

Thời gian từ M đến C là: frac{{7 - x}}{5}left( h right)

Tổng thời gian từ A đến C là 148 phút nên ta có:

begin{array}{l}frac{{sqrt {16 + {x^2}} }}{3} + frac{{7 - x}}{5} = frac{{148}}{{60}}\ Leftrightarrow frac{{sqrt {16 + {x^2}} }}{3} + frac{{7 - x}}{5} = frac{{37}}{{15}}\ Leftrightarrow frac{{5sqrt {16 + {x^2}} }}{{15}} + frac{{3.left( {7 - x} right)}}{{15}} = frac{{37}}{{15}}\ Leftrightarrow 5sqrt {16 + {x^2}} + 3.left( {7 - x} right) = 37\ Leftrightarrow 5sqrt {16 + {x^2}} = 16 + 3x\ Leftrightarrow 25.left( {16 + {x^2}} right) = 9{x^2} + 96x + 256\ Leftrightarrow 16{x^2} - 96x + 144 = 0\ Leftrightarrow x = 3left( {tm} right)end{array}

Vậy khoảng cách từ vị trí B đến M là 3 km.

[ad_2]

Đăng bởi: THPT An Giang

Chuyên mục: Học Tập

Viết một bình luận