Tìm giá trị x để A nhận giá trị nguyên

Photo of author

By THPT An Giang

[ad_1]

Nội dung đang xem: Tìm giá trị x để A nhận giá trị nguyên

Tìm giá trị x để A nhận giá trị nguyên là một trong những dạng toán trọng tâm thường xuất hiện trong các bài kiểm tra, bài thi học kì môn Toán lớp 9.

Cách tìm giá trị x để A nhận giá trị nguyên tổng hợp toàn bộ kiến thức về cách tính kèm theo ví dụ minh họa và một số bài tập tự luyện. Thông qua tài liệu này giúp học sinh củng cố, nắm vững chắc kiến thức nền tảng, vận dụng với các bài tập cơ bản để đạt được kết quả cao trong kì thi vào lớp 10 sắp tới. Vậy sau đây là Cách tìm giá trị x để A nhận giá trị nguyên mời các bạn cùng theo dõi tại đây.

1. Cách tìm giá trị x để biểu thức nhận giá trị nguyên

Phương pháp 1: Đưa biểu thức về dạng phân thức mà chứa tử thức là số nguyên, tìm giá trị của biến để mẫu thức là ước của tử thức.

Bước 1: Biến đổi biểu thức về dạng A = f\left( x \right) + \frac{k}{{g\left( x \right)}} trong đó f(x) là một biểu thức nguyên khi x nguyên và k có giá trị là số nguyên.

Xem thêm:  Bộ đề thi học kì 1 lớp 9 năm 2022 - 2023

Bước 2: Áp dụng điều kiện cùng với các bất đẳng thức đã được, chứng minh m < A < M trong đó m, M là các số nguyên.

Bước 3: Trong khoảng từ m đến M, tìm các giá trị nguyên.

Bước 4: Với mỗi giá trị nguyên ấy, tìm giá trị của biến x

Bước 5: Kết hợp với điều kiện đề bài, loại bỏ những giá trị không phù hợp rồi kết luận.

Phương pháp 2: Đánh giá khoảng giá trị của biểu thức, từ khoảng giá trị đó ra có các giá trị nguyên mà biểu thức có thể đạt được.

Bước 1: Đặt điều kiện của x để biểu thức A có nghĩa.

Bước 2: Rút gọn biểu thức A.

Bước 3: Đánh giá khoảng giá trị mà biểu thức A có thể đạt được, từ khoảng giá trị đó ta có các giá trị nguyên mà biểu thức A có thể đạt được.

Bước 4: Giải phương trình vế trái là biểu thức A đã rút gọn, vế phải là các giá trị nguyên nằm trong miền giá trị của A, đối chiếu điều kiện và kết luận.

Phương pháp 3: Đặt biểu thức bằng một tham số nguyên, tìm khoảng giá trị của tham số, từ khoảng giá trị đó ta xét các giá trị nguyên của tham số, giải ra tìm ẩn.

Bước 1: Đặt điều kiện của x để biểu thức A có nghĩa

Bước 2: Rút gọn biểu thức A

Bước 3: Đánh giá khoảng giá trị mà biểu thức A có thể đạt được, từ khoảng giá trị đó ta có các giá trị nguyên mà biểu thức A có thể đạt được

Xem thêm:  Tuyển tập 101 đề thi giữa kì 1 môn Toán 9

Bước 4: Giải phương trình vế trái là biểu thức A đã rút gọn, vế phải là các giá trị nguyên nằm trong miền giá trị của A, đối chiếu điều kiện và kết luận.

2. Ví dụ tìm x nguyên để biểu thức đạt giá trị nguyên

Ví dụ: Cho biểu thức A = \frac{{\sqrt x }}{{\sqrt x  - 3}} + \frac{{2\sqrt x  - 24}}{{x - 9}};B = \frac{7}{{\sqrt x  - 8}} với x ≥ 0 và x ≠ 9

a) Rút gọn biểu thức A.

b) Tìm các số nguyên x để M = A. B đạt giá trị nguyên.

Hướng dẫn giải

a) Rút gọn biểu thức ta được kết quả: A = \frac{{\sqrt x  + 8}}{{\sqrt x  + 3}}

b) Ta có:

M = A.B = \frac{{\sqrt x  + 8}}{{\sqrt x  + 3}}.\frac{7}{{\sqrt x  + 8}} = \frac{7}{{\sqrt x  + 3}} \Rightarrow 0 < M \leqslant \frac{7}{3}

Vậy các giá trị nguyên của M có thể đạt được là 1 và 2

Với M = 1 ta có:

\frac{7}{{\sqrt x  + 3}} = 1 \Rightarrow \sqrt x  + 3 = 7 \Rightarrow x = 16\left( {tm} \right)

Với M = 2 ta có:

\frac{7}{{\sqrt x  + 3}} = 2 \Rightarrow \sqrt x  + 3 = \frac{7}{2} \Rightarrow x = \frac{1}{4}\left( {tm} \right)

Vậy biểu thức M = A. B nhận giá trị nguyên khi và chỉ khi x = 16 hoặc x = 1/4.

Ví dụ: Cho biểu thức: A = \frac{{x - 2\sqrt x }}{{x\sqrt x  - 1}} + \frac{{\sqrt x  + 1}}{{x\sqrt x  + x + \sqrt x }} + \frac{{1 + 2x - 2\sqrt x }}{{{x^2} - \sqrt x }} (điều kiện x > 0,x \ne 1)

a) Rút gọn biểu thức A.

b) Tìm giá trị của x để A nhận giá trị là số nguyên.

Hướng dẫn giải

a) Học sinh thực hiện rút gọn biểu thức, ta có kết quả: A = \frac{{\sqrt x  + 2}}{{x + \sqrt x  + 1}}

b) Học sinh tham khảo một trong các cách làm dưới đây:

Cách 1: Với x > 0,x \ne 1 ta có: x + \sqrt x  + 1 > \sqrt x  + 1 > 1

Vậy 0 < A = \frac{{\sqrt x  + 2}}{{x + \sqrt x  + 1}} < \frac{{\sqrt x  + 2}}{{\sqrt x  + 1}} = 1 + \frac{1}{{\sqrt x  + 1}} < 2

Vì A nguyên nên A = 1 \Leftrightarrow \frac{{\sqrt x  + 2}}{{x + \sqrt x  + 1}} = 1 => x = 1 (Không thỏa mãn)

Vậy không có giá trị nguyên nào của x để giá trị A là một số nguyên.

Cách 2: Dùng miền giá trị

A = \frac{{\sqrt x  + 2}}{{x + \sqrt x  + 1}} \Leftrightarrow Ax + \left( {A - 1} \right)\sqrt x  + A - 2 = 0

Trường hợp 1: Nếu A = 0 \sqrt x  =  - 2 \Rightarrow x \in \emptyset

Trường hợp 2: Nếu A khác 0

\begin{matrix}   \Rightarrow \Delta  = {\left( {A - 1} \right)^2} - 4A\left( {A - 2} \right) =  - 3{A^2} + 6A + 1 \geqslant 0 \hfill \\   \Leftrightarrow {A^2} - 2A - \dfrac{1}{3} \leqslant 0 \Leftrightarrow {A^2} - 2A + 1 \leqslant \dfrac{4}{3} \Leftrightarrow {\left( {A - 1} \right)^2} \leqslant \dfrac{4}{3} \hfill \\   \Rightarrow A \in \left\{ {1;2} \right\} \hfill \\  A \in \mathbb{Z},A > 0 \hfill \\ \end{matrix}

Với A = 1 => x = 1 (Loại)

Với A = 2 \Rightarrow \frac{{\sqrt x  + 2}}{{x + \sqrt x  + 1}} = 2 => x = 0 (Loại)

Vậy không có giá trị nguyên nào của x để giá trị A là một số nguyên.

3. Bài tập tìm giá trị của x để biểu thức có giá trị nguyên

Bài 1: Tìm giá trị của x để các biểu thức dưới đây nhận giá trị nguyên:

Xem thêm:  Giải Toán 9 Bài 3: Liên hệ giữa phép nhân và phép khai phương

Bài 2: Cho biểu thức:

B = \frac{{2\sqrt x  + 13}}{{x + 5\sqrt x  + 6}} + \frac{{\sqrt x  - 2}}{{\sqrt x  + 2}};A = \frac{{2\sqrt x  - 1}}{{\sqrt x  + 3}};\left( {x \geqslant 0} \right)

a.Tính giá trị của biểu thức A khi x = 9

b. Tính biểu thức C = A – B

c. Tìm giá trị của x để C đạt giá trị nguyên

Bài 3: Cho biểu thức:

A = \left( {\frac{{x + 2}}{{x - \sqrt x  - 2}} - \frac{{2\sqrt x }}{{\sqrt x  + 1}} - \frac{{1 - \sqrt x }}{{\sqrt x  - 2}}} \right)\left( {1 - \frac{{\sqrt x  - 3}}{{\sqrt x  - 2}}} \right);\left( {x \geqslant 0;x \ne 4} \right)

a. Rút gọn biểu thức A.

b. Tìm x để A nhận giá trị nguyên.

Bài 4: Cho hai biểu thức:

A = \frac{{3\sqrt x  - 3}}{{x + \sqrt x }};B = \frac{1}{{\sqrt x  - 1}} - \frac{1}{{x\sqrt x  - 1}}

a) Tính A khi x = 25.

b) Rút gọn S = A . B.

c) Tìm x để S nhận giá trị nguyên.

[ad_2]

Đăng bởi: THPT An Giang

Chuyên mục: Học Tập

Viết một bình luận